通过卫星图像和机器学习对行星进行大规模分析是一个梦想,这一梦想不断受到难以获取高度代表性的高分辨率图像的成本的阻碍。为了纠正此问题,我们在这里介绍WorldStrat数据集。 The largest and most varied such publicly available dataset, at Airbus SPOT 6/7 satellites' high resolution of up to 1.5 m/pixel, empowered by European Space Agency's Phi-Lab as part of the ESA-funded QueryPlanet project, we curate nearly 10,000独特位置的SQKM,以确保全世界所有类型的土地用途分层:从农业到冰盖,从森林到多种城市化密度。我们还丰富了通常在ML数据集中代表不足的地点的人:人道主义兴趣的地点,非法采矿地点以及有风险的人的定居点。我们以10 m/pixel的可自由访问的下分辨率Sentinel-2卫星的多个低分辨率图像为暂时匹配每个高分辨率图像。我们伴随着该数据集的开源Python软件包,以:重建或扩展WorldStrat数据集,训练和推断基线算法,并使用丰富的教程学习,所有这些都与流行的EO-Learn Toolbox兼容。我们特此希望能够促进ML在卫星图像中的广泛应用,并可能从免费的公共低分辨率Sentinel2图像中发展出昂贵的私人高分辨率图像所允许的相同的分析能力。我们通过训练并发布了有关多帧超分辨率任务的几个高度计算效率的基线来说明这一特定点。高分辨率空中图像是CC BY-NC,而标签和Sentinel2图像为CC,而BSD下的源代码和预训练模型。该数据集可从https://zenodo.org/record/6810792获得,并在https://github.com/worldstrat/worldstrat上获得。
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译
In this paper, we address the problem of multimodal emotion recognition from multiple physiological signals. We demonstrate that a Transformer-based approach is suitable for this task. In addition, we present how such models may be pretrained in a multimodal scenario to improve emotion recognition performances. We evaluate the benefits of using multimodal inputs and pre-training with our approach on a state-ofthe-art dataset.
translated by 谷歌翻译
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Information spread on networks can be efficiently modeled by considering three features: documents' content, time of publication relative to other publications, and position of the spreader in the network. Most previous works model up to two of those jointly, or rely on heavily parametric approaches. Building on recent Dirichlet-Point processes literature, we introduce the Houston (Hidden Online User-Topic Network) model, that jointly considers all those features in a non-parametric unsupervised framework. It infers dynamic topic-dependent underlying diffusion networks in a continuous-time setting along with said topics. It is unsupervised; it considers an unlabeled stream of triplets shaped as \textit{(time of publication, information's content, spreading entity)} as input data. Online inference is conducted using a sequential Monte-Carlo algorithm that scales linearly with the size of the dataset. Our approach yields consequent improvements over existing baselines on both cluster recovery and subnetworks inference tasks.
translated by 谷歌翻译
The publication time of a document carries a relevant information about its semantic content. The Dirichlet-Hawkes process has been proposed to jointly model textual information and publication dynamics. This approach has been used with success in several recent works, and extended to tackle specific challenging problems --typically for short texts or entangled publication dynamics. However, the prior in its current form does not allow for complex publication dynamics. In particular, inferred topics are independent from each other --a publication about finance is assumed to have no influence on publications about politics, for instance. In this work, we develop the Multivariate Powered Dirichlet-Hawkes Process (MPDHP), that alleviates this assumption. Publications about various topics can now influence each other. We detail and overcome the technical challenges that arise from considering interacting topics. We conduct a systematic evaluation of MPDHP on a range of synthetic datasets to define its application domain and limitations. Finally, we develop a use case of the MPDHP on Reddit data. At the end of this article, the interested reader will know how and when to use MPDHP, and when not to.
translated by 谷歌翻译
Time series is the most prevalent form of input data for educational prediction tasks. The vast majority of research using time series data focuses on hand-crafted features, designed by experts for predictive performance and interpretability. However, extracting these features is labor-intensive for humans and computers. In this paper, we propose an approach that utilizes irregular multivariate time series modeling with graph neural networks to achieve comparable or better accuracy with raw time series clickstreams in comparison to hand-crafted features. Furthermore, we extend concept activation vectors for interpretability in raw time series models. We analyze these advances in the education domain, addressing the task of early student performance prediction for downstream targeted interventions and instructional support. Our experimental analysis on 23 MOOCs with millions of combined interactions over six behavioral dimensions show that models designed with our approach can (i) beat state-of-the-art educational time series baselines with no feature extraction and (ii) provide interpretable insights for personalized interventions. Source code: https://github.com/epfl-ml4ed/ripple/.
translated by 谷歌翻译
This paper reviews existing work in software engineering that applies statistical causal inference methods. These methods aim at estimating causal effects from observational data. The review covers 32 papers published between 2010 and 2022. Our results show that the application of statistical causal inference methods is relatively recent and that the corresponding research community remains relatively fragmented.
translated by 谷歌翻译
Large language models (LLMs) show excellent performance but are compute- and memory-intensive. Quantization can reduce memory and accelerate inference. However, for LLMs beyond 100 billion parameters, existing methods cannot maintain accuracy or do not run efficiently on hardware. We propose SmoothQuant, a training-free, accuracy-preserving, and general-purpose post-training quantization (PTQ) solution to enable 8-bit weight, 8-bit activation (W8A8) quantization for LLMs that can be implemented efficiently. We observe that systematic outliers appear at fixed activation channels. Based on the fact that weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by offline migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation. SmoothQuant enables an INT8 quantization of both weights and activations for all the GEMMs in LLMs, including OPT-175B, BLOOM-176B, and GLM-130B. SmoothQuant has better hardware efficiency than existing techniques using mixed-precision activation quantization or weight-only quantization. We demonstrate up to 1.56x speedup and 2x memory reduction for LLMs with negligible loss in accuracy. Thanks to the hardware-friendly design, we integrate SmoothQuant into FasterTransformer, a state-of-the-art LLM serving framework, and achieve faster inference speed with half the number of GPUs compared to FP16. Our work offers a turn-key solution that reduces hardware costs and democratizes LLMs. Code is available at: https://github.com/mit-han-lab/smoothquant.
translated by 谷歌翻译